1,6-DIHYDRO-3(2H)-PYRIDINONES AS SYNTHETIC INTERMEDIATES. TOTAL SYNTHESIS OF (\pm) -TECOMANINE

Takeshi IMANISHI, Noriyuki YAGI, and Miyoji HANAOKA* Faculty of Pharmaceutical Sciences, Kanazawa University Takara-machi, Kanazawa 920, Japan

Summary: The first and stereoselective total synthesis of (f)-tecomanine (1) has been achieved from ethyl 1,6-dihydro-3(2H)-pyridinone-1-carboxylate (2) as a synthon..

Tecomanine, a representative alkaloid isolated from *Tecoma stuns* Juss., 1 has a unique hexahydro-6H-2-pyrindin-6-one skeleton with three chiral centers as shown in structure χ^2 and its salts exhibit powerful hypoglycemic activities.³ In spite of some efforts to synthesize the base (1), $\frac{4}{1}$ no one has accomplished its final purpose to date.

Recently, we achieved formal syntheses of some indole alkaloids using a common starting material, ethyl 1,6-dihydro-3(2H)-pyridinone-1-carboxylate (2).⁵ Now we wish to describe here the first and stereoselective total synthesis of (t) -tecomanine (1) starting from the same synthon.

Reaction of ζ with methylmagnesium iodide in ether at-5° gave the 1,2adduct (2; $6a$ 56%) along with a small amount of the 1,4-adduct (4; 7.7%). Heating of the former in ethyl propenyl ether⁷ in the presence of mercuric acetate at 200° for 3 days, followed by methylation with methylmagnesium iodide, afforded the alcohol (5)^{6b} in 51% yield. On oxidation with FCC⁸ in methylene chloride the alcohol yielded the ketone ($6f$ ^{6 c} 72%) as a diastereoisomeric mixture, which was converted to the ketal $(7, 92)$ in the usual way. Hydroboration and oxidation of ζ afforded the two secondary alcohols $(8\text{\AA},{}^{6d}$ 49% and $8\text{\AA},{}^{6e}$ 41%). The formation of only two diastereoisomers would be well interpreted by the highly stereoselective addition of borane to 7 from the opposite side of the

bulky substituent at the allylic position, therefore the alkyl substutuents at C-3 and C-5 in β could be *cis* with each other as depicted.⁹ The *trans* relationship between C-3 and C-4 substituents would be supported from the fact that upon hydrolysis of βA or βB with a mineral acid the keto alcohol (βA or βB) was obtained in an excellent yield (84 or 91% yield, respectively) without formation of any cyclic hemiacetals.

Jones oxidation of 98 or 98 gave the diketone $(108^{6f}$ or $108^{6g})$ in 76 or 86% yield, respectively. On the other hand, oxidation of β at first and the subsequent hydrolysis with 10% hydrochloric acid in boiling tetrahydrofuran afforded the furan (12)^{6h} as a sole product via 10.¹⁰

The intramolecular condensation of LQR or LQR with excess potassium carbonate in boiling ethanol yielded none of the desired compound (42) but an exclusive formation of the more stable cyclopentenone isomer (λA) ⁶² in 29% (from (10) or 23% (from (10)) yield. 11 On a short time treatment with a small amount of potassium carbonate in absolute ethanol under nitrogen at 45-50° both 10A and λ OB gave regio- and stereoselectively the expected hexahydropyrindinone(λ 2)^{6*i*} in 87-88% yield. Under the condition employed the labile isomer (15) formed either from $1.0A$ or $1.0B$ seems to isomerize easily to the more stable and desired isomer (1,2) because of the severe steric interaction between C_7 -methyl and C_1 hydrogen.

Careful reduction of λ^2 with lithium aluminum hydride in ether at room temperature gave a mixture of two isomeric alcohols $(16)^{6k}$ in 37% yield with a moderate amount of the undefined compounds. The same product $(1,6)$ was also obtained via 17 in a rather low yield (28%) by sodium borohydride reduction of 13 and the subsequent lithium aluminum hydride reduction. Finally, PCC oxidation of $\frac{16}{10}$ furnished (\pm)-tecomanine ($\frac{1}{10}$)⁶¹ in 16% yield. The synthetic (\pm)-tecomanine is proved to be identical with natural tecomanine by means of IR (CHCl₃), UV (MeOH), and PMR $(CDC1₃)$ spectral comparisons.

Thus, the first total synthesis of (1) -tecomanine with a high stereoselectivity has been accomplished.

ACKNOWLEDGEMENT: We wish to thank Prof. G. Jones, Keele University, for sending the sample and the spectrum of natural tecomanine and its picrate.

REFERENCES AND NOTES

- 1. Y. Hammouda and M.M. Xotawi, *Egypt Pharm. BUZZ., 41, 73 (1959) [C. A., 54, 21646~* (1960)].
- *2. G.* Jones, H.M. Fales, and W.C. Wildman, *Tetrahedron Lett., 397* (1963); E.M. Dickinson and G. Jones, *Tetrahedron, 25, 1523* (1969); G. Ferguson and W.C. Marsh, *J. Chem. Sot. Perkin II, 1124* (1975).
- *3. Y.* Hammouda and M.S. Amer, *J. Pharm. Sci., 55, 1452* (1966).
- *4. cf. M.* Alam, J.D. Baty, G. Jones, and C. Moore, *J. Chem. Sot. (Cl,* 1520

(1969); T. Momose, M. Kinoshita, and T. Imanishi, *Heterocycles*, 12, 243 (1979).

- 5. T. Imanishi, I. Imanishi, and T. Momose, $Syn.$ $Commun.$, 8, 99 (1978); T. Imanishi, H. Shin, M. Hanaoka, T. Momose, and I. Imanishi, *Heterocycles*, 14, *1111 (1980); T.* Imanishi, H. Shin, N. Yagi, and M. Hanaoka, *Tetrahedron Lett., 21, 3285 (1980).*
- 6. All IR and PMR spectra were measured in CHCl, and CDCl, solutions, respective-1y. a) v 3400, 1685, δ 1.29(3H,s), 3.29&3.69(2H,ABq, $J=13$), 3.75&4.09(2H, $ABq-d, J=7, 2$, 5.40&5.70(2H,ABq-d, $J=10, 2$); b) v 3380, 1680, δ 1.16(3H,d, $J=7$), 1.68(3H,s), 5.47&5.63(4:1, total lH, each m); c) v 1705, 1680, δ 1.05&1.13 (2:3,total 3H,each d,J=6), 1.67(3H,s), 2.11&2.15(total 3H,each s), 5.37(1H,s); d) v 3410, 1670, δ 0.94(3H,d,J=7), 1.01(3H,d,J=5.5), 1.31(3H,s), 3.93(4H,s); e) v 3400, 1670, δ 1.01(3H,d,J=5), 1.02(3H,d,J=7), 1.34(3H,s), 3.97(4H,s); f) v 1705, 1680, δ 0.99(3H,d,J=6), 1.08(3H,d,J=7), 2.31(3H,s); g) v 1705, 1680, δ 1.03(3H,d,J=6.5), 1.22(3H,d,J=7.5), 2.23(3H,s); h) v 1670. 1600, δ 1.18(3H, d, $J=6.5$), 1.85(3H,s), 2.17(3H,s), m/e 237(M^{+}), 136(base); i) v 1720, 1680, δ 1.02(3H,d,J=6), 1.75(3H,m), 3.48&5.06(2H,ABq,J=15); j) \vee 1695, 1680, 1615, δ $1.20(3H,d,J=4.5)$, $1.21(3H,d,J=7.5)$, $5.19(1H,s)$, m/e 237($M⁺$), 180(base); k) v 3575, 2790, 6 1.06(3H,d,J=6.5), 1.17(3H,d,J=6.5), 2.31&2.25(total 3H,s), 4.41 (lH,broad s), 5.35&5.36(total lH,s); I) v 1690, 1620, 870, 6 1.16(3H,d,J=6.5), 1.19(3H,d,J=7.5), 2.35(3H,s), 5.86(1H,s); λ (MeOH) 225.5nm, m/e 179(M^{+} ,base), its picrate: mp 184.5-185.5°(from EtOH).
- 7. Ethyl propenyl ether was prepared according to the method of F. Effenberger, P. Fisher, G. Prossel, and G. Kiefer, *Chem. Ber., 104, 1987* (1971). On the basis of its PMR spectrum the ether is a mixture of Z- and E-isomers in a ratio of 2.5:1.
- 8. E.J. Corey and J.W. Suggs, *Tetrahedron Lett., 2647 (1975).*
- 9. On the other hand, a mixture of cis and $trans$ -dialkylated alcohols (18)[6] 0.96&1.00(1:2, total 3H, each d, $J=6$, C₅-Me)] was obtained upon a similar treatment of the less bulky olefin $(\frac{19}{12})$, prepared from $\frac{3}{2}$ by the reaction with ethyl vinyl ether and the subsequent acetalization.

10. *Cf.* R. Gaertner and R.G. Tonkyn, *J. Am. Chem. Sot., 73, 5872* (1951). *Cf.* W.G. Dauben and D.J. Hart, *J. Org. Chem., 42,* 3787 (1977); G. Stork, G. L. Nelson, F. Rouessac, and O. Gringore, J. Am. Chem. Soc., 93, 3091 (1971).

(Received in Japan 7 November 1980)